
1. Introduction
The 30 November 2022 earthquake near the town of Peace River (∼45 km ESE) is one of the largest documented 
(ML 5.6) in the history of Alberta (Figure 1), exceeded by the MW 5.4 14 March 2001 Dawson Creek event. The 
Peace River event was widely felt: ∼690 km SSE in the city of Calgary and ∼340 km WNW at Fort McMurray 
(NRCan ID: 20221130.0055; USGS ID: us6000j5n4). So far, no damage has been reported; likely because of the 
remote setting of the epicenter (Schultz et al., 2021b). Statements by the Alberta Energy Regulator (AER, 2022) 
asserted that this earthquake was not induced, but a natural tectonic event. This assertion was based on prelim-
inary depth estimates and a presumed lack of nearby operations. Contrary to this, we argue that this event was 
most likely induced.

Earthquakes induced by human activities are well documented (Ellsworth, 2013; Schultz et al., 2020) and have 
been of growing concern. The Western Canada Sedimentary Basin (WCSB) has had a long history of seismic-
ity related to petroleum development. First, an older history related to conventional resource exploitation tech-
niques of production, secondary recovery (Horner et al., 1994; Wetmiller, 1986), and wastewater disposal (Li 
et al., 2022; Schultz et al., 2014; Yu et al., 2022). Second, a recent surge in WCSB seismicity caused by uncon-
ventional development of shales via hydraulic fracturing (Atkinson et al., 2016). Typically, hydraulic fracturing 
of deeper shales has induced earthquakes: such as the Exshaw Formation (Schultz, Mei, et al., 2015), Duvernay 
Formation (Schultz & Wang, 2020; Wang et al., 2020), the Montney Formation (Mahani et al., 2017; Peña Castro 
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hydrogen.

Plain Language Summary Earthquakes can be caused by underground fluid injection; cases of 
M5 induced events have caused damage and harm. One of the largest recorded earthquakes in Alberta (ML 5.6) 
occurred in a region of underground oil sand development. Here, ground shaking and deformation information 
are combined into an interpreted result: that ancient faults were reactivated with reverse slip. The fault slip is 
largely within the crystalline basement, with a small portion extending into basal sediments. Nearby injection 
operations dispose of petroleum-related wastewater in these basal sediments. This earthquake was likely 
triggered by the injection process: injection increases pore pressure, which diffuses laterally along permeable 
sediments, until encountering fractured rock, which channelizes flow into the crystalline basement—the 
increase of pore pressure within the fault continues until reaching a critical point for slip initiation. This event 
likely being induced will have important implications for future operations.
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et al., 2020), and the Muskwa Shale. To date, both conventional and unconventional development have induced 
moderate magnitude events (M4), with the largest single event being MW 4.6 (Mahani et al., 2017).

Large magnitude (M  >  5) earthquakes have been induced by hydraulic fracturing, wastewater disposal, and 
enhanced geothermal systems elsewhere in the world (Foulger et al., 2018). Sometimes, these earthquakes have 
caused economic and human losses. In response, moratoriums have been placed on resource development due to 
concerns of earthquake risk. Thus, induced earthquakes raise questions for effective risk management (Schultz 
et al., 2021a, 2021b). Especially since a climate conscious energy transition requires subsurface injection of CO2 
at scale (Krevor et al., 2023). Therefore, a detailed analysis of the Peace River earthquakes is important for ensur-
ing safe subsurface injection practices moving forward—especially considering the potential for CO2 storage in 
Alberta (Zhang et al., 2022).

2. Background on In Situ Bitumen Recovery
Operations within the Peace River study area target the Bluesky Formation (Figure  1), a Lower Cretaceous 
aged glauconitic sandstone saturated with bitumen; initial estimates of in-place volume suggested approxi-
mately 10 10 m 3 of oil sand hosted bitumen in the Peace River region (AER, 2015). Conventional bitumen recov-
ery focuses on excavation in shallower basins; however, the Peace River region is too deep (∼550–700 m) for 
economical excavation and instead utilizes unconventional in situ recovery techniques (Hein,  2017). Cyclic 
steaming stimulation (CSS), steam assisted gravity drainage (SAGD), and cold heavy oil production with sand 
(CHOPS) techniques are used to mobilize bitumen for extraction via well pumping (de Klerk,  2020). These 
unconventional recovery processes aim to decrease the viscosity of oil sands, for example, by injecting solvents 
or hot steam. Recovery typically produces a mixture of 25%–30% bitumen and 70%–75% water (de Klerk, 2020), 
which requires wastewater management via subsurface disposal. The study area has produced ∼4.5 × 10 7 m 3 of 
oil and ∼9.6 × 10 7 m 3 of water to date (∼68% water). In response, ∼1.0 × 10 8 m 3 of wastewater has been injected 
into basal sediments.

3. Peace River Earthquakes
We compile and reexamine seismicity in the Peace River study area dating back to 1985 (Gu et  al.,  2011; 
Schultz & Stern, 2015; Stern et al., 2013). The detectability of our catalog is temporally heterogenous, largely 
due to sparse station coverage and interrupted operation of nearby seismometers (Schultz, Stern, et al., 2015). 
Consequently, the seismic history of the region lacks the location resolution needed to precisely define fault 
structures. Despite this shortcoming, recent records define three separate areas of clustered earthquakes 
(north, middle, and south), two of which (middle and south) coincide with ongoing in situ bitumen recovery 
(Figure 1). These two clusters are relatively recent, (apparently) starting after station installations (mid-2014); 
there are also nearby deep injection wells disposing wastewater from bitumen recovery. The northern cluster 
is the longest and most persistent—identified immediately following installation of regional/local stations in 
2014 (Figure 2). Almost certainly, this sequence initiated before it was detected. The southern cluster contains 
swarms of 18 M > 2 events that were first recorded in 2017. The most recent swarm started 23 November 
2022, paused briefly, and then continued on 30 November with foreshocks of ML 4.8 and 5.0 before rupturing 
the ML 5.6 event. We note that a prior swarm also occurred here in mid-2021. Events trend along −47°, which 
is suggestive of a fault strike orientation. Eleven southern cluster earthquakes were large enough to deter-
mine moment tensors and centroid depths using the generalized cut-and-paste method (Figure 3 and Table 
S4 in Supporting Information S1). These earthquakes all have reverse mechanism, striking at ∼NW-SE, with 
centroid depths of ∼3.9 km. Our modeling constrains the 30 November 2022 event to MW 5.1 with a centroid 
depth of ∼4.0 km.

The southern cluster earthquakes produced surface deformation measurable by interferometric synthetic aperture 
radar (InSAR). The line of sight (LOS) ground displacement is confined to two lobes, with up to +3.4 cm and 
−0.8 cm of deformation between 18 and 30 November 2022 (Figure 3). The modeled fault slip is roughly circular 
(∼2.0 km radius) with strike −63° and dip 58°; the peak slip (∼29 cm) occurs at ∼3.4 km depth. Our geodeti-
cally modeled moment (MW 5.16, assuming a shear modulus of 30 GPa) is comparable to the seismically derived 
cumulative moment (MW 5.13). Additional details on the processing of seismological and geodetic data can be 
found in Supporting Information S1 (Sections S1.1–S1.4).
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Figure 1. Study area and nearby industry operations. (a) Map showing the province of Alberta with regional seismicity (gray circles), the Dawson Creek MW 5.4 
earthquake (orange star), the study area (dotted box), and relevant stations (legend symbols) within ∼500 km. Inset polygon shows the location of Alberta within North 
America. (b) Map showing the study area with earthquakes (red circles), nearby stations (green triangles), and the town of Peace River (gray polygon with text). Well 
locations are shown (gray tadpoles), with injection wells highlighted (blue tadpoles). Faults previously interpreted from stratigraphic offsets and 2D reflection seismic 
(Weides et al., 2014) are shown (black lines).

Figure 2. Space and time data for earthquakes and injection. Information for the three clusters near Peace River: South (top row), middle (middle row), and North 
(bottom row). The ML 5.6 event is denoted by a red star. Left column (a, c, e) maps the earthquakes (red circles), injection wells (blue tadpoles and text), and stations 
(green triangles). Right column (b, d, f) temporally plots earthquake magnitudes (red circles), the magnitude of completeness (Mc, red dashed line), and monthly 
injection rates (blue lines). Earthquakes are distinguished for those above (darker red) and below (lighter red) the Mc. The inset legends show the color keys to the 
unique well identifier, with only deep (>1,750 m) and the few highest total volume (>10 5 m 3) disposal wells highlighted for clarity. The only exception is well 06–14 
(792 m), due to its proximity to the ML 5.6 event. Legends are partly transparent to allow viewing of timeseries data behind them.
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4. Relationship to the Nearby Bitumen Recovery
The preliminary statement from the Alberta Energy Regulator (AER, 2022) said that this event was likely of 
natural/tectonic origin—rationalized by a lack of hydraulic fracturing activity, lack of nearby fluid disposal, and 
the depth of the earthquake. These rationalizations are contrary to the results of our study (Figures 2 and 3). To 
elaborate, we frame our discussion around the criteria for assessing if an earthquake has been induced (Foulger 
et  al.,  2022). These assessment criteria encompass an examination of the location/timing of the events with 
respect to the suspected operations, establishing a plausible means of communication between the operation and 
the reactivated fault, and assessing a mechanism for sufficient stress changes on the fault.

4.1. Spatiotemporal Association With Operations

Each of the three clusters in the Peace River region are examined for their spatiotemporal association with nearby 
disposal operations (Figure 2). Earthquakes in both the middle and southern cluster are relatively new and nearby 
deep disposal operations of significant volume.

For example, the middle cluster's centroid is ∼1.5 km from well 13-11, which injected 10 6 m 3 of wastewater at 
2.2 km depth into the Paleozoic aged Leduc Formation; seismicity initiated ∼1.0–1.5 years after the initial injec-
tion and continues (Figures 2c and 2d). A more rigorous correlation analysis between the earthquake-injection 
time series indicates between 89% and 97% confidence of a temporal association (Section S1.5 and Figure S6 in 

Figure 3. Local fault information comparison. Constraints on the reactivated fault in the southern cluster are compared for earthquake hypocenters (red circles), focal 
mechanisms (beach balls), geodetic slip extent (orange polygon), geodetic slip centroid (orange circle), and prior studies (black lines) (Weides et al., 2014). Geodetically 
modeled fault strike and dip orientations are indicated by the line between orange x's and the solid orange line, respectively. Additionally, well locations are provided 
(gray tadpoles) and highlighted for injection wells (blue tadpoles). Information is plotted in map view (left panel) and N-S depth profile (right panel). Colors represent 
InSAR ground displacement and colored depth profile indicates the depth of Precambrian basement.

 19448007, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
102940 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [08/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

SCHULTZ ET AL.

10.1029/2023GL102940

5 of 10

Supporting Information S1), which is suggestive of a causal relationship; although, this analysis is hampered by 
current data availability.

Similarly, the southern cluster's centroid is ∼2.3 km from well 14–18, which injected 10 6 m 3 of wastewater at 
1.9 km depth into the Leduc Formation; seismicity appears to follow ∼4.5–8.5 years after the initial injection 
and occurs in swarms of activity (Figures 2a and 2b). The ML 5.6 event occurs ∼10 years after injection at well 
14–18 first started.

These distances and time delays are consistent with prior observations of induced seismicity, where delays are 
often on the order of years per kilometer (Ake et al., 2005; Park et al., 2020; Schultz et al., 2014; Wetmiller, 1986). 
These delays are often interpreted as the time required for the diffusion of pore pressure from the deep injection 
well, through the permeable aquifer, and along the fractured damage zone of a fault—until pressure increases are 
sufficient for fault slip reactivation (Ellsworth, 2013; Raleigh et al., 1976). The volumes injected in these disposal 
wells is comparable to (or greater than) prior induced seismicity cases within the WCSB (Li et al., 2022; Schultz 
et al., 2014).

The furthest, oldest, and most prolific cluster occurs north of Peace River (Figures 2e and 2f). The centroid of this 
cluster is ∼19 km from well 16–23, which injected more than 10 7 m 3 of wastewater at 1.9 km depth into the Leduc 
Formation since 1986. While well 16–23 is the most significant and long-duration injector, more than 10 6 m 3 
of wastewater have been injected within the near-basement Paleozoic strata (1.8–1.9 km depths) in three other 
wells within 14–21 km. In total, almost 10 8 m 3 of wastewater has been disposed of in the vicinity of the northern 
cluster. Though we are unable to discern when seismicity started, due to poor network detection resolution prior 
to the 2014 improvements (Schultz, Stern, et al., 2015). Earthquakes were detected immediately following the 
installation of regional stations (Figure 2f). Therefore, it is likely that these northern earthquakes had already 
been ongoing (and undetected) for decades. Similarly, in the broader northern Alberta region, prior seismicity of 
significant magnitude (M 5.1) has been documented—and speculated to be induced, but this is inconclusive due 
to poorer station coverage (Milne, 1970).

In comparison to the Delaware Basin of west Texas, hydrological modelling suggests pore pressure increases 
on the order of 0.1–1 MPa (that are sufficient to initiate fault slip) can be transmitted at large distances (Ge 
et al., 2022). More directly, disposal induced earthquakes in the Delaware Basin have been caused from wells 
25–40  km distant from the earthquake cluster (and injecting ∼10 5−6  m 3 each) (Pepin et  al.,  2022; Skoumal 
et al., 2020). If induced, this northern cluster near Peace River would more closely resemble American cases of 
disposal earthquakes (that are induced by a network of wells over longer distances (McGarr & Barbour, 2017; 
Skoumal et al., 2020)) rather than the Canadian counterpart of more spatially restricted well-earthquake cases 
(Li et al., 2022; Schultz et al., 2014; Yu et al., 2022). Of course, the interpretation of these sequences as induced 
would require the existence of a critically stressed basement-rooted fault capable of hosting slip.

4.2. Relationship to Known Faults

The Peace River Arch (PRA) was a Paleozoic cratonic uplift associated with a passive margin that overprinted on 
the preexisting Precambrian basement structure; the PRA subsequently underwent extension until the Mesozoic, 
creating graben structures and an embayment (later a deep basin) (O’Connell et al., 1990). The lateral extent 
of the PRA is ∼140 km wide, extending for hundreds of kilometers basinward (east) from the Cordillera—it is 
one of the largest tectonic structures to influence the overlying sediments within the WCSB. Induced seismicity 
has already been documented in regions associated with PRA-related tectonic structures (Horner et al., 1994; 
Peña Castro et al., 2020). Our study area is situated in the eastern region of the PRA (Figure 1b), where normal 
faults of up to 40 km in strike length crosscut from basement into the sedimentary section (Weides et al., 2014). 
Local basement depths are reported to vary between 1.6 and 2.4 km (Weides et al., 2014).

Our composite analysis from earthquake relocations, focal mechanism inversions, and InSAR geodetic modeling 
paint a consistent picture of the seismicity in the southern cluster (Figure 3). For example, all three methodologies 
indicate the presence of a fault striking ∼NW-SE with centroid depths of 3.4–4.0 km. Geodetic inversions suggest 
that fault slip was predominantly in the basement, with a smaller fraction possibly extending into basal sedi-
ments up to ∼1.5 km in depth. Similarly, prior literature examining 2D reflection seismic and geophysical logs 
identified basement-rooted normal faults crosscutting the sedimentary section into the Late Cretaceous (Weides 
et al., 2014)—an interval that contains the target formation for in situ bitumen recovery. One of these previously 
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identified normal faults is close to the fault inferred in this paper. Such faults could provide a plausible means 
for channelized pore pressure migration from the basal Paleozoic injection interval (1.9 km) into the basement 
(<2.4 km). The deposition of basal carbonate reef formations, like the injected Leduc Formation, have (arguably) 
been influenced by faulting/tectonic structures (Corlett et al., 2018). Depth differentials of ∼2–4 km between 
the sedimentary injection interval and basement induced earthquakes have been documented before (McGarr & 
Barbour, 2017; Schultz et al., 2014; Skoumal et al., 2020).

While reverse slip on our focal mechanism fault plane is expected for the WCSB stress field (Shen et al., 2019; 
Wang et al., 2018), the exact state of stress and structure that was reactivated in the 30 November 2022 ML 5.6 
(MW 5.1) can be argued. Prior stress assessment suggested that the seismically resolved sedimentary normal 
faults were unlikely to be reactivated in a strike-slip regime (Weides et al., 2014). Correspondingly, much of 
the WCSB induced earthquakes have been strike-slip faulting in basal sediments (Shen et  al.,  2019; Wang 
et al., 2018). However, reverse faulting seismicity has been observed within the Precambrian basement (Schultz 
& Wang, 2020; Wetmiller, 1986)—suggesting either a stress regime bordering on strike-slip/reverse, or a depth 
dependent change in stress regime (Lund Snee & Zoback, 2020). It is worth noting that ancient normal faults 
reactivating with reverse slip in a modern stress field have been documented in other cases of induced seismicity 
(Clarke et al., 2014). Regardless of the exact structure hosting slip within the shallow basement, faults appear to 
have facilitated fluid pressure migration into the basement, inducing/triggering slip nucleation (Figure 4).

4.3. Appraisal of Triggering Mechanisms

Pore pressure increases are the most common mechanism for inducing seismicity: increasing pressure within a 
fault decreases the effective normal stress, perturbing the fault closer to the slip criteria (Raleigh et al., 1976). 
While we have focused on pore pressure increases due to wastewater injection, poroelastic stress changes from 
production are also known to cause fault slip initiation (Segall, 1989; Segall & Lu, 2015). Mass and volume 
reduction within the reservoir alters the stress state locally—promoting reverse slip above/below the reservoir 

Figure 4. Interpreted triggering mechanisms. Bitumen recovery occurs from in situ wells (gray rigs and lines) targeting the 
Bluesky Formation (gray rectangle). The production of bitumen reduces overburden stress and increases horizontal stress 
(gray dashed line), which is transferred through the rock matrix, destabilizing the underlying fault (black line). As well, 
produced water is disposed of via injection wells (blue rig and line) targeting deep Paleozoic strata, like the Leduc Formation. 
The injection of fluids eventually increases pore pressure within the underlying fault, destabilizing it. The induced reverse 
fault slip (beachball) heaves the overlying strata, creating the InSAR observed ground deformation.
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and normal slip at the margins. In fact, reverse earthquakes have already been induced on faults below a (second-
ary) production reservoir in the WCSB (Wetmiller, 1986). There, decades of production from the basal Leduc 
Formation in the Strachan D3A pool simultaneously reduced the overburden stress and increased the maximum 
horizontal stress: continued production (and subsequently continued stress magnitude changes) eventually reacti-
vated a ∼1 km underlying basement fault after ∼5 years of gas extraction (Baranova et al., 1999).

Analogously, poroelastic stresses due to in situ bitumen recovery near Peace River would contribute to dest-
abilizing an underlying basement fault for reverse reactivation. In this sense, there are multiple contributing 
mechanisms (pore pressure and poroelasticity) to fault reactivation (Figure 4). Here, we argue that pore pressure 
is likely the dominant mechanism. The first piece of evidence is from the northern cluster (Figures 1 and 2), 
which has no nearby in situ bitumen recovery; thus, this cluster's triggering mechanism must be entirely caused 
by long-range disposal effects. By analogy, it is plausible that a similar mechanism could be relevant for the 
middle and southern clusters. The second piece of evidence comes from estimates of the stress changes at the 
earthquake centroid from bitumen recovery (Figures S7–S8 and Section S1.6 in Supporting Information S1); 
this analysis suggests that stress changes from overburden removal and reservoir pressure decline would be (at 
most) on the order of 0.1–1 kPa, which is similar in magnitude to tidal stressing changes that only have arguable 
influences on triggering earthquakes (Yan et al., 2022). Typically, Coulomb failure stress changes on the order 
of 0.1–1 MPa are required to induce slip (Baranova et al., 1999; Ge et al., 2022). However, we acknowledge 
that a full thermo-hydromechanical modeling study would be required to assert the relative fault stress changes 
more confidently; especially since there are cases of induced seismicity where both production and disposal 
likely contributed to fault reactivation (Grasso et al., 2021). We also note that once the earthquakes have begun, 
earthquake-earthquake interactions could also impact the distribution of stress on the fault (Wang et al., 2020).

4.4. Implications

Addressing climate change, while also allowing the petroleum industry to operate, will require the successful 
development of blue hydrogen and/or CO2 storage at scale. Blue hydrogen—the synthesis of hydrogen as a 
fuel from heavy oil or bitumen—creates CO2 as a byproduct, which must be sequestered by subsurface injec-
tion. Industrial scale injection of CO2 into deep sedimentary formations carries similar risks of inducing earth-
quakes as wastewater disposal (Zoback & Gorelick, 2012), with some subtle differences to account for multiphase 
fluid flow and CO2 dissolution (Vilarrasa & Carrera, 2015). Consideration of CO2 injection and blue hydrogen 
will likely be important for the future of industry in Alberta (Krevor et al., 2023; Razi & Dincer, 2022; Zhang 
et al., 2022).

Injection of fluids into the subsurface is currently seen as the most economical means to dispose of industrial 
waste. Safe injection of CO2 will require an understanding of fault reactivation potential, derived from geome-
chanics and in situ measurement of pressures and stresses, as well as high-sensitivity monitoring for seismic-
ity during the lifetime of the project (Templeton et  al.,  2023). Forward thinking CO2 development can learn 
two things from the Peace River case. First, that long-term operations (including subsurface injection) have the 
potential to induce earthquakes—often with significant lag times for seismic response. Second, the importance 
of high sensitivity measurement both before and during the lifetime of the project: here, the lack of precise and 
low-magnitude seismic data hampered the resolvability of induced events and their properties. These lessons are 
particularly important considering the significant potential of low b-values (0.55 ± 0.05 observed here) for large 
magnitude events (Figure S1 in Supporting Information S1), exponential scaling of consequence with magnitude 
(Langenbruch et  al.,  2020), and the influence of location on exposure to risk (Schultz et  al.,  2021a,  2021b). 
Certainly, other M > 5 induced events (in highly exposed locations) have caused damage and ended operations 
(Foulger et al., 2018). Ideally, operations would be sited in locations that are remote from critical infrastructure, 
residential homes, and industrial operations—to balance the earthquake consequences with the costs/risks of 
waste transportation. These considerations will be key to monitoring injection, understanding induced earth-
quakes, planning for sustainable/safe injection practices, and developing mitigation/management strategies for 
their hazards and risks.

5. Conclusions
Contrary to previous assessments, we find that the ML 5.6 (MW 5.1) 30 November 2022 event was most 
likely induced—highlighting the importance of rigorous causation assessment. Our conclusion is based on a 
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spatiotemporal assessment of earthquakes with nearby injection, evidence of nearby normal faults from the Peace 
River Arch, viable triggering mechanisms, and a contextual comparison against prior induced cases. We interpret 
that wastewater from in situ bitumen recovery disposed into basal Paleozoic sediments increased aquifer pore 
pressures, that diffused to pre-existing (normal) faults, channelizing downwards along the fault damage zone (or 
other pathways), increasing fault pressures until reaching the critical slip criteria. The fault reactivated in reverse 
due to the orientation and magnitudes of the current stress field. While pore pressure increases are the likely 
culprit for triggering these events, poroelastic contributions from in situ bitumen recovery may have also played a 
subtle role in promoting fault slip. Examination of two other Peace River sequences would suggest that they were 
similarly induced—with one potentially ongoing and undetected in the past. The results of this study will have 
implications for future industry development, such as CO2 storage and blue hydrogen.

Data Availability Statement
The derived catalogue (Table S1), phase picks (Table S2), and focal mechanism (Table S4 in Supporting Informa-
tion S1) are available as supplements. Regional waveform data is from several networks including: the Regional 
Alberta Observatory for Earthquake Studies Network (Schultz & Stern, 2015) (https://doi.org/10.7914/SN/RV), 
Canadian Rockies and Alberta Network (Gu et  al.,  2011), Canadian National Seismic Network (https://doi.
org/10.7914/SN/CN), and Portable Observatories for Lithospheric Analysis and Research Investigating Seis-
micity. All waveform data is publicly available online at the Incorporated Research Institutions for Seismology 
(IRIS). Regional catalogue information from the Alberta Geological Survey (Stern et  al.,  2013) is available 
online (https://ags-aer.shinyapps.io/Seismicity_waveform_app/). Regional catalogue information from Natural 
Resources Canada is also available online (https://earthquakescanada.nrcan.gc.ca/stndon/NEDB-BNDS/bulle-
tin-en.php). Local information on faulting were digitized from prior work (Weides et al., 2014). The Sentinel-1 
InSAR data used in this study is publicly available for download at the European Space Agency's Open Access 
Hub (https://scihub.copernicus.eu/dhus/#/home) or from the Alaska Satellite Facility's online Vertex (https://
search.asf.alaska.edu/#/). Industry well information including production and injection activities were accessed 
through Prism via Enervus (https://www.enverus.com/).
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